Skip to main content

Publications

Calder JT, Christman ND, Hawkins JM, Erickson DL. 2020. A trimeric autotransporter enhances biofilm cohesiveness in Yersinia pseudotuberculosis but not in Yersinia pestis. J Bacteriol DOI: 10.1128/JB.00176-20

Carlson S, Erickson DL, Wilson E. 2020.  Staphylococcus aureus metal acquisition in the mastitic mammary gland. Microbial Pathogenesis 144  https://doi.org/10.1016/j.micpath.2020.104179

Schachterle JK, Stewart RM, Schachterle MB, Calder JT, Kang H, Prince JT, Erickson DL. 2018.  Yersinia pseudotuberculosis BarA-UvrY two-component regulatory system represses biofilms via CsrB. Front. Cell. Infect. Microbiol.  doi:  10.3389/fcimb.2018.00323

Olson MA, Siebach TW, Griffitts JS, Wilson E, Erickson DL.2018. Genome-wide identification of fitness factors in mastitis-associated  Escherichia coliAppl Environ Microbiol 84(2):e02190-17

Hoffman JM, Sullivan S, Wu E, Wilson E, Erickson DL. 2017. Differential impact of lipopolysaccharide defects caused by loss of RfaH in  Yersinia pseudotuberculosis and  Yersinia pestis. Sci Rep. 7(1):10915.  PubMed PMID: 28883503

Erickson DL, Lew CS, Kartchner B, Porter NT, McDaniel SW, Jones NM, Mason S, Wu E, Wilson E. 2016. Lipopolysaccharide Biosynthesis Genes of  Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines. PLoS One 11(6):e0157092.  PubMed PMID: 27275606

Pallister KB, Mason S, Nygaard TK, Liu B, Griffith S, Jones J, Linderman S, Hughes M, Erickson D, Voyich JM, Davis MF, Wilson E. 2015. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria. PLoS One 10(9):e0138084. PMID: 26359669

Zhou W, Johnson K.L ., Mortensen R.D and Erickson D.L. 2012. Gene expression analysis of  Xenopsylla cheopis fleas suggests a role for reactive oxygen species in response to  Yersinia pestis infection. J. Med. Entomol 49:364-370.

Erickson D.L ., Russell C.W., Johnson K.L., Hileman T., and Stewart R.M. 2011. PhoP and OxyR transcriptional regulators contribute to  Yersinia pestis virulence and survival within  Galleria mellonellaMicrobial Pathogenesis 51:389-95
 
Vogt S.L., Green C., Stevens K.M., Day B., Erickson D.L., Woods D.E. and Storey D.G. 2011. The stringent response is essential for  Pseudomonas aeruginosa virulence in the rat lung agar bead and  Drosophila melanogaster feeding models of infection. Infect. Immun. 79:4094-104.

Erickson D.L.  Anderson N.A., Cromar L.M., Jolley A.,2009. Bacterial Communities Associated with Flea Vectors of  Yersinia pestis. J. Med. Entomol. 46:1532-1536. 

Erickson D.L., Jarrett C.O., Callison J.A., Fischer E.R., and Hinnebusch B.J.. 2008.  Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of  Yersinia pestis. J. Bacteriol. 190:8163-70. 

Hinnebusch B.J. and Erickson D.L.  2008.  Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr. Top. Microbiol. Immunol. 322:229-48. 

Erickson D.L., Waterfield N.R., Vadyvaloo V., Long, D., Fischer E.R.., Ffrench-Constant R.H., and Hinnebusch B.J.  2007. Acute oral toxicity of  Yersinia pseudotuberculosis towards  Xenopsylla cheopis: implications for the evolution of flea-borne transmission of  Yersinia pestis. Cell. Microbiol. 9:2658-66.