Publications
Calder JT, Christman ND, Hawkins JM, Erickson DL. 2020. A trimeric autotransporter enhances biofilm cohesiveness in Yersinia pseudotuberculosis but not in Yersinia pestis. J Bacteriol DOI: 10.1128/JB.00176-20
Carlson S, Erickson DL, Wilson E. 2020. Staphylococcus aureus metal acquisition in the mastitic mammary gland. Microbial Pathogenesis 144 https://doi.org/10.1016/j.micpath.2020.104179
Schachterle JK, Stewart RM, Schachterle MB, Calder JT, Kang H, Prince JT, Erickson DL. 2018. Yersinia pseudotuberculosis BarA-UvrY two-component regulatory system represses biofilms via CsrB. Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2018.00323
Olson MA, Siebach TW, Griffitts JS, Wilson E, Erickson DL.2018. Genome-wide identification of fitness factors in mastitis-associated Escherichia coli. Appl Environ Microbiol 84(2):e02190-17
Hoffman JM, Sullivan S, Wu E, Wilson E, Erickson DL. 2017. Differential impact of lipopolysaccharide defects caused by loss of RfaH in Yersinia pseudotuberculosis and Yersinia pestis. Sci Rep. 7(1):10915. PubMed PMID: 28883503
Erickson DL, Lew CS, Kartchner B, Porter NT, McDaniel SW, Jones NM, Mason S, Wu E, Wilson E. 2016. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines. PLoS One 11(6):e0157092. PubMed PMID: 27275606
Pallister KB, Mason S, Nygaard TK, Liu B, Griffith S, Jones J, Linderman S, Hughes M, Erickson D, Voyich JM, Davis MF, Wilson E. 2015. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria.PLoS One 10(9):e0138084. PMID: 26359669
Zhou W, Johnson K.L., Mortensen R.D, and Erickson D.L. 2012. Gene expression analysis of Xenopsylla cheopis fleas suggests a role for reactive oxygen species in response to Yersinia pestis infection. J. Med. Entomol 49:364-370.
Erickson D.L., Russell C.W., Johnson K.L., Hileman T., and Stewart R.M. 2011. PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella. Microbial Pathogenesis 51:389-95.
Vogt S.L., Green C., Stevens K.M., Day B., Erickson D.L., Woods D.E. and Storey D.G. 2011. The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection. Infect. Immun. 79:4094-104.
Erickson D.L. Anderson N.A., Cromar L.M., Jolley A.,2009. Bacterial Communities Associated with Flea Vectors of Yersinia pestis. J. Med. Entomol. 46:1532-1536.
Erickson D.L., Jarrett C.O., Callison J.A., Fischer E.R., and Hinnebusch B.J.. 2008. Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. J. Bacteriol. 190:8163-70.
Hinnebusch B.J. and Erickson D.L. 2008. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr. Top. Microbiol. Immunol. 322:229-48.
Erickson D.L., Waterfield N.R., Vadyvaloo V., Long, D., Fischer E.R.., Ffrench-Constant R.H., and Hinnebusch B.J. 2007. Acute oral toxicity of Yersinia pseudotuberculosis towards Xenopsylla cheopis: implications for the evolution of flea-borne transmission of Yersinia pestis. Cell. Microbiol. 9:2658-66.