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Introduction

Transcription activator-like effectors (TALE) proteins 
from the Xanthomonas pathogen activate transcription 
of specific plant host proteins (Bogdanove et al. 2010). 
TALEs contain a nuclear localization signal, a transcrip-
tional activation domain, and a DNA-binding domain 
(Fig. 1). The DNA-binding domain contains modular 
repeats, with each monomer bound to one base in the 
DNA target. The number and order of repeats in the 
DNA-binding domain vary and determine the binding 
specificity for the DNA sequence. The cipher encoding 
TALE recognition for specific DNA sequences identified 
the recognition determinants as the repeat variable di-
residues (RVDs) found at amino acid positions 12 and 13 
of each monomer (Boch et al. 2009; Moscou and Bogda-
nove 2009). The race to develop this system as a tool to 
target specific DNA sequences ensued after cracking of 
the cipher.

Researchers took advantage of past successes fusing 
the catalytic domain of FokI endonuclease to zinc fingers 
to design TALE/FokI chimera called transcription activa-
tor-like effector nucleases (TALENs). These TALENs, in 
the form of functional protein pairs, bind and cleave their 
designated DNA targets (Li et al. 2011; Mahfouz et al. 
2011; Cermak et al. 2011). The resulting double-stranded 
break triggers the host cell’s DNA repair systems. Cellular 
non-homologous end joining (NHEJ) repair or homology-
directed repair/recombination (HDR) repairs the lesion 
(Budhagatapalli et al. 2015; Tesson et al. 2016). Experi-
mentalists target these repair pathways, using NHEJ for 
gene disruption and HDR for gene correction or insertion 
of exogenous DNA.

Following proof of principle, the Golden Gate and 
FLASH assembly systems streamlined construction of 
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this new gene-editing tool set (Li et al. 2011; Miller 
et al. 2011; Cermak et al. 2011; Reyon et al. 2012). More 
recently, Ligation Independent Cloning (LIC), Golden 
Gate, and Platinum Gate assemblies have reduced the time 
and expense required for TALEN construction (Christian 
et al. 2010; Schmid-Burgk et al. 2013; Cermak et al. 2015; 
Schmid-Burgk et al. 2015; Sakuma and Yamamoto 2016).

There are four main challenges in applying gene-editing 
endonuclease (GEEN) technology to treat HIV: i) editing 
efficiency; ii) delivery; iii) off-target editing and cytotox-
icity; and iv) immune tolerance. There are four general 
classes of GEEN technologies (Meganucleases, Zinc Fin-
ger Nucleases (ZFNs), TALENs, and CRISPR/Cas-9) 
tested on different targets to develop new HIV gene thera-
pies (Han and Li 2016).

In this review, we focus on the study of TALENs tar-
geting both host and viral HIV genes as a promising HIV 
therapy. The advantages of TALENs include their mini-
mal cytotoxicity and off-target editing (Mussolino et al. 
2011; Cradick et al. 2013). However, we note that in a 
recent clinical trial patients tolerated treatment with ZFNs 
targeting host CCR5, despite the generally recognized 
off-target editing and cytotoxicity with ZFN technology 
(Cornu and Cathomen 2010). TALENs, like CRISPR/
Cas-9, have high flexibility in design for specific target 
sites and several examples of high editing efficiency (Val-
ton et al. 2012; Miller et al. 2015). Other advantages are 

the design of TALENs to target methylated HIV proviral 
DNA, which is relevant to latent infection, and encoding 
monomers with degenerate recognition to target predicted 
escape mutations (Bultmann et al. 2012; Valton et al. 
2012; Chen et al. 2013; Strong et al. 2015). Disadvan-
tages in using TALENs are that they take longer to build, 
are larger, thus more difficult to deliver, and are likely to 
generate an immune response. Herein, we review the cur-
rent progress on potential TALEN-based HIV therapies 
(Table 1).

Host and viral targets for gene editing

The HIV early life cycle comprises pre-transcriptional 
steps of virion entry into cells, uncoating of the virus enve-
lope, reverse transcription of the viral genome, formation 
of the pre-integration complex, and integration of proviral 
DNA into the host genome (Fig. 2) (Levy 1993). Following 
provirus integration, HIV gene expression is precisely con-
trolled. During the late steps of replication, the infected cell 
packages two copies of the HIV genome into an immature 
HIV particle that buds off the plasma membrane. Host or 
viral genes necessary for viral replication or maturation are 
potential therapeutic targets for gene editing.

Scientists have investigated TALEN editing of both host 
and viral targets. In a functional cure, HIV proliferation is 

Fig. 1  TALEN pair targeting HIV proviral DNA. Example of 
TALEN binding, cleavage and repair of double-strand breaks. TAL-
ENs bind and cleave a DNA target sequence; the HIV LTR sequence 

is the example shown (Strong et al. 2015). Endogenous NHEJ repair 
of double-strand breaks introduces indels
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controlled without eradication of the latent viral reservoir 
(Liu et al. 2015). The purpose of targeting host proteins 
is to produce a functional cure, thereby suppressing viral 

replication and restoring a functional immune system in 
the presence of infection. Thus far, the objective of target-
ing HIV genes is to damage the proviral DNA in infected 

Table 1  Characteristics of viral vectors targeting T cells, macrophages, dendritic cells, and hematopoietic stem cells for HIV-1 gene therapy 
Table adapted from (Schroers et al. 2004; Zhang et al. 2013; Ayuso 2016; Summerford and Samulski 1998; Finkelshtein et al. 2013)

a Not applicable
b Vesicular stomatitis virus
c Low-density lipoprotein

Gene therapy characteristics Adenoviral vector Lentiviral vector Adeno-associated viral vector

Tissue tropism Proliferating and non-proliferating 
cells

Proliferating and non-proliferating 
cells

Proliferating and non-proliferating 
cells

Packaging capacity 7–35 kb 8 kb 4.5 kb

Relative delivery efficiency High Very high High

Gene expression level Transient Stable Stable or transient

Integration site N/Aa Random site AAVS1 site in chromosome 19

Immunogenicity High Low Negligible

Pseudotyped with Ad5/35 fiber VSV-glycoproteinb N/Aa

Receptors CD46 LDL receptorc Heparan sulfate proteoglycan 
(serotype 2)

Fig. 2  HIV and host targets of TALEN-based therapies. Cartoon of a T cell with cell processes labeled and TALEN targets labeled in red font
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cells, thereby eradicating the latent viral reservoir. One 
distinct difference in these strategies is that both copies of 
the host genes would need to be inactivated in the diploid 
genome, whereas targeting HIV genes needs to inactivate 
the one integrated copy of HIV provirus (Josefsson et al. 
2011). This also has the advantage that error prone NHEJ is 
favored over homologous recombination repair of TALEN-
induced double-strand breaks. Herein, a number of tar-
get genes selected to negatively impact HIV infection are 
discussed.

Target site selection

Criteria for target gene selection are that the gene is 
required for viral replication or maturation, the human host 
should tolerate inactivation of the gene, and that the target 
region of the viral or host gene should not have high nucle-
otide sequence similarity with other regions of the host 
genome that could result in off-target editing.

Once a target has been identified, designing TALENs 
to minimize, if not completely abrogate, off-target editing 
is important (Kim et al. 2013; Lin et al. 2014). TALENs 
designed to target HIV should consider that remnants of 
ancient retroviral infections acquired over the course of 
human evolution exhibit sequence homology with HIV 
(Schiffer et al. 2012; Ishida et al. 2015). There are two 
approaches to reduce off-target editing: i) increasing the 
specificity of each TALENs DNA-binding domain; and 
ii) avoiding off-target sites found elsewhere in the human 
genome. In target site selection, in silico tools like Tal 
Effector Nucleotide Targeter 2.0, Prognos, CHOPCHOP, 
E-TALEN, TALEN-NT, TALENoffer, and SAPTA predict 
potential off-target sites with good accuracy (Doyle et al. 
2012; Grau et al. 2013; Heigwer et al. 2013; Fine et al. 
2014; Lin et al. 2014; Montague et al. 2014).

Following TALEN construction, researchers must also 
consider the potential contribution of TALEN expression 
to the off-targeting phenomenon. Over-expression of TAL-
ENs saturate the target site, increasing the likelihood of 
off-target editing. This may be an issue even at nanomo-
lar concentrations, considering the strong affinities of 
TALENs for their targets (Bultmann et al. 2012; Guilinger 
et al. 2014). However, there is a trade-off with efficiency 
as higher expression levels increase on-target editing effi-
ciency (Strong et al. 2015). Scientists routinely use Sanger 
sequencing, CEL-I and/or T7E1 assays to evaluate off-tar-
get editing; however, whole genome sequencing and whole 
exome sequencing are more rigorous approaches to evalu-
ate specificity. It is noteworthy that with proper TALEN 
design, off-target editing can be largely eliminated (Ding 
et al. 2012; Ousterout et al. 2013). Furthermore, several 
modifications to TALENs minimize off-target editing as 
described later.

Entry co‑receptors CCR5 and CXCR4

HIV mainly uses the host CCR5 or CXCR4 as co-recep-
tors to CD4 for cell entry. Individuals homozygous for a 
CCR5Δ32 deletion display resistance to HIV infection 
(Dean et al. 1996; Huang et al. 1996; Zimmerman et al. 
1997; Benkirane et al. 1997). CCR5 silencing, anti-CCR5 
antibodies, and small molecular inhibitors inhibit HIV 
infection, confirming the strategy of blocking CCR5 func-
tion (Lopalco 2010; Mock et al. 2015). The HIV resistance 
of CCR5 depleted cells gained acceptance when the “Ber-
lin patient”, who received HLA-compatible stem cell trans-
plantation from an individual homozygous for CCR5-Δ32, 
remained free of virus without highly active antiretroviral 
therapy (HAART) therapy (Yukl et al. 2013). However, 
the “Essen patient”, who received very similar treatment, 
relapsed with a X4 tropic HIV, indicating that targeting 
of CCR5 alone may not prove a comprehensive approach 
(Kordelas et al. 2014).

These observations laid the groundwork for a therapeu-
tic gene-editing approach initially targeting the CCR5 co-
receptor. Studies of CCR5 gene disruption with ZFNs have 
been reviewed (Drake and Bates 2015; Gu 2015; Allers 
and Schneider 2015). More recently, editing of this target 
has progressed to the stage of testing in humans (Reardon 
2014; Tebas et al. 2014). A phase I clinical trial including 
12 patients treated with ZFNs to inactivate CCR5 was tol-
erated for almost a year and showed efficacy for treatment 
in one patient (Tebas et al. 2014). While promising, a major 
concern is that ZFNs produce off-target editing and cyto-
toxicity, and this was not examined in these patients (Hän-
del and Cathomen 2011).

One advantage of TALENs is their minimal cytotox-
icity and off-target editing compared to other GEENs 
(Mussolino et al. 2011; Cradick et al. 2013). TALENs are 
also among the gene-editing techniques targeting CCR5 
(Manjunath et al. 2013). The CCR5 target sites of TAL-
ENs include DNA sequences encoding transmembrane 
domains (Mussolino et al. 2011; Ru et al. 2013; Liu et al. 
2014; Mock et al. 2015). A noteworthy caveat is that HIV 
switches its preference from CCR5 to the CXCR4 co-
receptor in the later stages of infection (Hütter et al. 2015). 
Hou et al. disrupted the CXCR4 gene with CRISPR/Cas-9, 
increasing resistance to X4 tropic HIV in cell culture. How-
ever, using CXCR4 as a gene-editing target is debatable, 
considering its role in thymic differentiation, progenitor 
cell migration and homing, and hematopoietic cells (Hou 
et al. 2015).

TALEN editing to treat HIV infection has limitations 
such as sequence variability in the divergent strains of HIV, 
high mutation rates in TALE binding sites that could pro-
duce escape mutations, and inefficient delivery of TALENs 
to latent cells that are less than <1 % of the total T cells. 
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To address escape mutations, TALENs are unique among 
GEENs, where monomers with NS RVDs bind and cleave 
targets with degenerate positions (Boch et al. 2009). For 
example, Strong et al. showed that TALENs engineered to 
recognize degeneracy edited mutated targets at poorly con-
served positions in the HIV long terminal repeat (Strong 
et al. 2015). Despite this advantage, CRISPR/Cas-9 editing 
of the HIV provirus produced some escape indels, raising 
the possibility that some TALEN editing may also produce 
indel escape mutations (Wang et al. 2016). There may also 
be limitations in accessing the HIV genome packaged in 
heterochromatinized DNA in latent cells, which would be a 
problem for all GEEN therapies. However, TALEN design 
modification that recognize methylated cytosine make it 
possible for targeting the compactly packaged DNA includ-
ing silenced LTRs in latent cells (Valton et al. 2012).

LEDGF/p75

Several observations warrant the investigation of host Lens 
epithelium-derived growth factor (LEDGF/p75) as a target 
for gene editing. LEDGF/p75 binds integrase and facili-
tates HIV proviral DNA integration into the host genome 
(Cherepanov et al. 2005; Shun et al. 2007). Additionally, 
LEDGF/p75 complexes with Iws1 and Spt6, promoting 
latency (Gérard et al. 2015). Inhibitors or the LEDGF/
p75-Integrase interaction reduce HIV replication (Christ 
et al. 2012). Fadel et al. knocked out the exon coding 
regions for the integrase binding domain, as well as the 
complete LEDGF/p75 gene using TALENs (Fadel et al. 
2014). The knockout severely affected HIV replication in 
Jurkat cells. Interestingly, LEDGF/P75 is also a therapeutic 
target for mixed lineage leukemia (MLL)(Cermáková et al. 
2014). However, the majority of LEDGF/P75 knockout 
mice die prenatally and the surviving develop phenotypic 
abnormalities, raising concerns for LEDGF/P75 inactiva-
tion in human cells (Sutherland et al. 2006).

Long terminal repeat

Resting memory T cells can serve as a reservoir of latent 
HIV infection, persisting while under HAART and 
rebounding after HAART cessation (Chun et al. 2010; Le 
et al. 2011). GEENs, like TALENs, can edit targets in the 
integrated proviral genome. Targeting HIV genes or regu-
latory regions has the advantage that it does not interfere 
with the host genes. One of the two non-coding long termi-
nal repeats (LTR) contains the HIV promoter, which drives 
expression of viral proteins. The transactivation response 
element (TAR) region of the LTR is critical for viral repli-
cation, thus is a viable target.

Strong et al. targeted this highly conserved region that 
occurs in both the 5′ and 3′ LTR of the viral genome using 

TALENs. A dose-dependent increase in TALEN expression 
enhanced editing efficiency with maximal 55–60 % edit-
ing efficiency. The linear dose–response suggests that even 
higher expression would produce higher editing efficiency. 
Furthermore, TALEN-mediated LTR editing abolished 
virion production in cells harboring an integrated complete 
HIV-1 genome (Strong et al. 2015). A side-by-side compar-
ison of TALENs and CRISPR/Cas-9 technologies showed 
that TALEN-mediated editing of the LTR was significantly 
more efficient than editing by CRISPR/Cas-9 in a T cell 
line (Ebina et al. 2015).

Refining TALENs gene editing

Since the introduction of the TALEN technology, several 
modifications improved editing efficiency (sensitivity) 
and reduced off-target editing (specificity). Modifications 
of FokI and scaffolds enhance TALEN editing efficiency 
(Fig. 3). The Sharkey mutations and obligate heterodimer 
mutations in the FokI nuclease domain of ZFNs increased 
the editing efficiency and have been transferred to TALENs 
(Guo et al. 2010; Doyon et al. 2011). Directed evolution 
experiments in bacteria identified the Sharkey mutations 
in FokI (S148P and K441E) that increase editing three- to 
sixfold, over wild type (Guo et al. 2010). Structure-guided 
engineering of the FokI nuclease dimerization interface 
identified a set of obligate heterodimer mutations (ELD: 
Q486E, I449L, N496D with KKR: E490K, I153K, and 
H537K) (Doyon et al. 2011). Accordingly, a FokI nucle-
ase domain with the ELD mutation will only dimerize with 
its partner domain containing the KKR mutation, which 
enhances cleavage site specificity, as dimerization is nec-
essary for endonuclease activity. Fortuitously, the Sharkey 
and heterodimer mutations cooperatively improve TALENs 
editing efficiency, but not yet tested in targeting HIV tar-
gets (Nakajima and Yaoita 2013; Guilinger et al. 2014).

The TALEN scaffold determines the overall architec-
ture of the TALEN protein. Improvements in TALEN scaf-
folds include the length of N- and C-terminal domains, 
sequences of non-RVD residues in TALE repeats, and 
substitution of non-classical RVD monomers. First-gener-
ation TALENs scaffolds were typical of the TAL effector 
architecture from Xanthomonas spp., with an N-terminal 
domain of 287 residues, C-terminal domain of 231 resi-
dues, and 13–30 bp between the target binding sites (Chris-
tian et al. 2010). However, a series of TALEN constructs 
helped elucidate that truncated N-terminal and C-terminal 
domain with 136 and 63 residues, respectively (+136/+63 
scaffold), more efficiently edit several human genes when 
compared with other scaffolds (Miller et al. 2011).

The Miller et al. study laid the foundation for sec-
ond-generation TALEN scaffold modifications (Goldy, 
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Platinum, and Sunny TALENs). Goldy TALENs have a 
+158/+63 scaffold (N-terminus/C-terminus lengths), 
exhibit greater editing efficiency when compared with first-
generation TALENs, and are built with Golden Gate clon-
ing (Cermak et al. 2011; Bedell et al. 2012; Ma et al. 2013). 
Platinum TALENs have a +136/+63 or +153/+47 scaf-
fold with non-RVD variants in the 4th and 32nd residues, 
compared with classic TALE monomers whose residues are 
similar except at the RVD. These non-RVD variants can be 
D–D, D–A, E–A, or A–D (Sakuma et al. 2013; Miller et al. 
2011). Unlike Goldy and Platinum TALENs, Sunny TAL-
ENs have a relatively longer scaffold of +207/+63 with 
a point mutation (P11H) in the C-terminal domain (Sun 
et al. 2012a). These second-generation TALENs increased 
the editing efficiency across many cell lines and organisms 
(Sun et al. 2012b; Nakajima and Yaoita 2013; Sakuma et al. 
2013).

In addition, other RVD mutations broaden the TALE 
cipher (AA binds T, HN binds G, CI binds A, and RD binds 
C) (Miller et al. 2015) or target epigenetic modifications 
that may impair TALEN accessibility. DNA targets con-
taining 5-methylated cytosines, generally found in CpG 
islands, can prevent TALENs from binding their designated 
targets (Bultmann et al. 2012; Valton et al. 2012; Chen 
et al. 2013). Fortunately, substitution of the HD monomer 
that recognizes cytosine with a unique monomer (N*) rec-
ognizing methylated cytosine is a viable work-around in 
select instances (Valton et al. 2014). Several TALEs with 
mutated lysines or arginines in the C-terminal domain pro-
duced enhanced editing efficiency (Guilinger et al. 2014). 
Mutation of three (Q3) or seven (Q7) cationic amino 
acids to glutamine enhanced the DNA binding specific-
ity (Guilinger et al. 2014). When targeting CCR5, the Q3 
and Q7 TALENs produced approximately 24- and 120-fold 
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TALE-RVD
NI             
HD       
NG       

NN/NK  
NS   
N*      

1st generation 

2nd generation: 
Goldy TALE 

Sunny TALE  

Platinum TALE  
289LTPAQVVAIASNNGGKQALETVQRLLPVLCQAHG322
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A   
C 
T   
G  
G,A,T,C 
methyl-C 

Scaffolds 

TALE recognition code 

287                                        231          

136                                  63   

136                                 63 

153                                  47 

207                                   63   

Fig. 3  Location of Sharkey and obligate heterodimer mutations in 
the FokI endonuclease. a Structure of complex [Protein Data Bank 
(PDB) accession = 1FOK] of wild-type Flavobacterium okea‑
nokoites FokI protein (blue) with DNA (red/gray). Mutations are 
colored: magenta and green indicate the ELD and KKR obligate het-
erodimers mutations of the FokI, respectively (Doyon et al. 2011); 
turquoise indicates the Sharkey mutations (Guo et al. 2010). b TALE 
recognition code. Protein sequence and structure of PthXo1 TALE 
(PDB accession = 3UGM, amino acids 289–322) with positions of 
the RVD colored blue (Mak et al. 2012). Nucleotide recognition code 
for substituted RVDs is shown; asterisk indicated deletion. c Scaf-

folds used to build TALENs. Lengths of N- and C-terminal domains 
are shown with TALE repeats. Red indicates the C-terminus; purple 
indicates first-generation TALE repeats and green indicates Platinum 
TALE repeats; blue indicates first-generation C-terminal domain; and 
yellow indicates mutated Sunny TALE C-terminal domain. PthXo-
1TALE structure (amino acids 289–322) with positions of the RVD 
(blue) and substitutions in the repeat scaffold at positions 4 and 35 
(yellow) shown for Platinum TALEs (PDB accession = 3UGM). 
Structure figures were created with MOLMOL 2 K.1 (Koradi et al. 
1996)
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high specificity, respectively, for the CCR5 target site 
(Guilinger et al. 2014).

Delivery

Criteria for selecting the optimal delivery method for 
TALENs must consider the target cell, target cell pro-
liferation status, size of the TALEN genes, desired gene 
expression level, toxicity, delivery efficiency, ease of 
delivery system construction, and immune response, if 
delivered in vivo. To translate TALEN-based HIV therapy 
from the bench to bedside, scientists must carefully bal-
ance these often competing criteria. While the preferred 
delivery method for TALENs is in vitro transfection, this 
approach generally does not work well in differentiated 
cells and in vivo. Instead, scientists most often select 
recombinant viral vectors for in vivo experimentation. 
Adenoviral, adeno-associated vectors, and lentiviral vec-
tors are among the most frequent vectors used in clini-
cal trials testing gene therapy. Consequently, this section 
focuses on these vectors.

Adenoviral vector

Adenoviruses, non-enveloped doubled-stranded DNA 
viruses, interact with host cell receptors through viral fiber 
proteins extending from the viral capsid. More than 50 
human adenoviruses have been characterized, and adeno-
viral vector constructs based on serotype 5 (Ad5) are in 
common use (Holkers et al. 2014). Ad5 adenovirus infects 
cells through binding the coxsackievirus–adenovirus recep-
tor (CAR). First-generation adenoviral vectors replaced 
genes required for replication (E1) with exogenous gene(s) 
of interest. These vectors, with limited packaging capacity 
accommodate small inserts and require complement cell 
lines for propagation. Second-generation adenoviral vec-
tors lack genes for replication and viral packaging (such 
as E1, E3, and E4) and can accommodate up to a 10 kb 
transgene. Correspondingly, “empty” adenoviruses have a 
packaging capacity of about 35 kb. The empty virus lacks 
most viral genes excluding the inverted terminal repeat 
(ITR) and packing signal, and thus requires a helper vec-
tor and complement cell line to produce the virus (Holkers 
et al. 2014).

While adenoviruses with a TALEN transgene targeting 
HIV do not yet exist, Ad5 has been pseudotyped for T cells, 
and adenoviral vectors that express TALEN for gene edit-
ing were tested. Adenoviral vectors infect both proliferating 
and non-proliferating cells with relatively high transduction 
efficiency, and thus could target HIV-infected T cells with 
active and latent infection. Adenoviruses cannot infect T 
cells or macrophages because of low CAR expression. As 
such, chimeric pseudotyped Ad5/F35 adenoviral vectors 

displaying the F35 fiber bind host CD46 and transduce 
hematopoietic cells via CD46 (Schroers et al. 2004). Pseu-
dotyped Ad5/F35 could be engineered to express TALENs. 
The viral DNA does not integrate into the host genome 
and transiently expresses transgenes. Infection with a set 
of recombinant Ad5 adenoviral vector delivered monocis-
tronic TALEN pairs, producing editing of the Ddx3y gene 
(Zhang et al. 2013). Optimally, it would be better to use a 
bicistronic vector with the Ad5, but packaging both large 
TALEN genes may prove difficult.

Lentiviral vector

Lentiviral vectors, derivatives of HIV, produce virions with 
an icosahedral nucleocapsid and a genome size of 3–9 kb. 
The generation of lentiviral vectors involves various plas-
mids including: a packaging plasmid with rev-response 
element, gag, pol, tat, and rev sequences, an expression 
plasmid consisting of a packaging signal, gene of inter-
est, and LTR and a pseudotyping plasmid consisting of a 
VSV envelope glycoprotein sequence. These plasmids are 
propagated and packaged in complement cell lines (Zheng 
et al. 2015). The VSV-G pseudotyping of lentiviral vectors 
confers broad tissue tropism resulting in infection of cells 
in vitro and in vivo, as used in clinical trials for metachro-
matic leukodystrophy indication (Cronin et al. 2005). Len-
tiviral vectors have relatively high transduction efficiency 
observed in primary hematopoietic cells (~60 %) and sta-
bly express integrated genes (Li et al. 2005). However, 
VSV-G psuedotyped lentiviral vectors cannot specifically 
infect resting CD4+ T cells. In such cases, lentiviral vectors 
psuedotyped with Vpx–VLP (Viral protein x and Virus-like 
particle) and CXCR4-tropic HIV-1 envelope can be used 
to mediate delivery (Agosto et al. 2009; Geng et al. 2014). 
Non-targeted integration into tumor suppressor genes loci 
is a major cause for concern when using lentiviral vectors 
(Maldarelli et al. 2014). Furthermore, an 8 kb packaging 
capacity is inadequate for some bicistronic TALEN pairs, 
and stable gene expression may not be appropriate for edit-
ing HIV entry receptors or proviral DNA long term. In any 
case, lentiviral vectors may become a more attractive gene 
therapy tool if the potential of integrase-defective lentiviral 
vectors is realized (Hanoun et al. 2016).

Adeno‑associated viral vector (rAAV)

The AAV genome, approximately 5 kb in length, presents 
with a packaging capacity of about 4.5 kb. This packag-
ing capacity is a limiting factor with regard to bicistronic 
construction of TALEN pairs. The ability of AAV to inte-
grate into the host genome, typically into the AAVS1 site 
in the human chromosome 19 (Ayuso 2016), may be a 
double-edged sword depending on the therapeutic context. 
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However, the beauty of AAV is its non-pathogenicity, neg-
ligible immunogenicity, and broad tissue tropism in the 
human host. Taken together, these characteristics make 
AAV an ideal delivery candidate for gene therapy. In fact, 
AAV-mediated delivery of TALENs and megaTAL (fusion 
of TALE binding domain with a meganuclease cleavage 
domain) can edit the CCR5 gene in primary human T cells 
(Sather et al. 2015).

Non‑viral delivery

Several methods for non-viral delivery of TALENs to edit 
genes are therapeutically relevant for treating HIV infec-
tion. For example, the Pseudomonas aeruginosa type III 
secretion system (injectosome) delivery of TALEN proteins 
into the nuclei of HeLa cells produces editing (Jia et al. 
2014). Likewise, liposomes and nanoparticles have been 
used to deliver anti-oncogenic drugs and may also show 
promise for delivering TALEN proteins to nuclei of cells 
(Malam et al. 2009). Because HIV-infected cells can exist 
in anatomical reservoirs such as the brain or gastrointesti-
nal tract, an all-hands-on-deck approach to exploring deliv-
ery systems that can safely cargo TALENs to T cells, mac-
rophages, and dendritic cells, should be pursued.

Editing stem cell and transplantation

The biggest advantages of introducing a patient’s own stem 
cells as a therapy for HIV is that these cells can be edited 
ex vivo, selected based on a resistance marker, expanded, 
and then the cells can be used to deliver the edited genome; 
furthermore, they are expected to be well tolerated by the 
immune system. This allows broader options in using other 
delivery systems for in vitro editing and then screening for 
edited cells prior to transplantation. Since the stem cells are 
edited before being introduced into the systemic circula-
tion, they overcome the uncertainty of delivery and editing 
under in vivo conditions. Furthermore, cryopreserved cells 
can be saved for treatment of viremia relapse.

Gene editing in the human pluripotent CD34+ stem 
cells, followed by transplantation into humanized mice 
(HM), has proven successful for the CCR5 locus (Cornu 
et al. 2015). Harvested somatic cells can be reprogrammed 
to develop induced pluripotent stem cells (iPSCs). iPSCs 
with homozygous CCR5Δ32 were generated with TAL-
ENs or CRISPR/Cas-9 and Piggybag technology (Ye et al. 
2014).

Animal models for HIV gene editing

An increase in gene delivery and genome-editing efficiency 
is one of the current aims in the HM field, because success 

in these areas should translate to new therapies in humans. 
Research groups have been able to establish a delivery effi-
ciency between 30 and 40 % in cells in which the editing 
efficiency resulted in 10–25 % depending on the analyzed 
tissue (Holt et al. 2010; Hauber et al. 2013).

The HM class of models offers many well-known 
advantages that make it a suitable option to test gene-edit-
ing therapies in living organisms. Mice reproduce quickly, 
are relatively inexpensive for research, and are amenable 
to genetic manipulation, thus allowing the production of 
highly immunodeficient strains. The generation of HM is 
produced through the engraftment of human hematopoi-
etic stem cells (HSCs) which go on to produce a wide 
variety of human white blood cell types, of which T cells 
and monocytes/macrophages are the main targets of HIV-1 
infection (Berges et al. 2006, 2008; Akkina et al. 2011; 
Berges and Rowan 2011; Sanchez and Berges 2013). HM 
infected with HIV-1 develop persistent infections and 
AIDS. Moreover, long-term HIV-1 infection has been 
shown in Rag2−/−γc−/− which was not possible in prior 
generations of HM models (Berges et al. 2010). Due to the 
generation of the hematopoietic lineage of the stem cells, 
AIDS disease development is remarkably similar to human 
pathology (Berges et al. 2006). Novel techniques are also 
arising with the aim of transducing stem cells prior to 
engraftment, thus allowing the HM to contain desirable 
genes in all progeny white blood cells (Holt et al. 2010; 
Hauber et al. 2013).

Despite the great advances accomplished with the HM, 
some limitations must be considered. Even though engraft-
ment is a successful method for accomplishing human 
hematopoiesis in mice, each animal must be engrafted 
individually, and the engraftment process requires about 
2 months to reach a mature human immune system. In 
addition, a source of human umbilical cord blood or fetal 
liver is required to obtain the primary human cells required 
for engrafting. Although HM are always made following 
the same protocol, human adaptive immune responses can 
be inconsistent. Stem cells extracted from umbilical cord 
blood come from multiple donors. Hence, scientists experi-
ment with both homogeneous (single donor) and heteroge-
neous populations (multiple donors) of HM.

On the other hand, some researchers use non-human 
primates (NHPs) for their animal models. NHPs are more 
similar in size to humans and their genetics are more simi-
lar; however there are significant inconveniences that can 
disqualify this organism to be used in research: i) Even 
though it is feasible to infect some types of NHPs with 
HIV-1, no AIDS-like pathogenesis has been documented 
and therefore it is not possible to use NHPs to study a 
therapy intended for use in humans (McClure et al. 2000); 
ii) NHP maintenance is considerably more expensive 
than mice maintenance; and iii) NHPs require specialized 
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facilities and expert veterinarians to ensure the welfare of 
the animals. Due to these facts many scientific institutions 
are unable to provide an appropriate environment.

Original HM were unable to develop a wide hematopoi-
etic cell repertoire required to study HIV-1 pathogenesis, 
and in some models infection only lasted a few months 
(Mosier et al. 1991; Aldrovandi et al. 1993; Mosier 1996; 
Jamieson et al. 1996). Nevertheless, advances in this field 
over the last few decades produced a new generation of 
mice with different mutations and cell types engrafted that 
make them more suitable to perform these kinds of stud-
ies. Common immunosuppressive mutations are combina-
tions of Rag1 or Rag2 mutations to prevent T and B lym-
phocyte development, paired with a mutation in the gene 
encoding the common gamma chain receptor that prevents 
natural killer cell and T cell development. Mutations caus-
ing the severe combined immunodeficiency (SCID) pheno-
type or in combination with the non-obese diabetic (NOD) 
phenotype have also been extremely useful (Berges and 
Rowan 2011). The resulting strains and the use of HSCs 
have proven to be the most effective to date for generating 
a primary human adaptive immune response showing high 
levels of CD4+ T cells, monocytes, macrophages, and den-
dritic cells, which are the main HIV-1 targets (Shultz et al. 
2007). Furthermore, HM serves as a model for many differ-
ent types of pathogenesis because infections can last more 
than a year (Berges et al. 2010; Berges and Rowan 2011).

The ability of HIV-1 to develop resistance to drug treat-
ment and to escape from immune surveillance has been 
widely studied. Studies with HM advanced our understand-
ing of HIV-1 evolution by: i) mutations in the pol gene 
render HIV-1 resistant to ART (Choudhary et al. 2009); 
ii) in addition, mutations in the env gene can affect gly-
cosylation patterns and promote escape from neutralizing 
antibodies (Ince et al. 2010); and iii) resistance to anti-
HIV-1 drugs can also result from sub-lethal A3-mediated 
G-to-A mutations (Sato et al. 2010); this results from the 
action of APOBEC3 proteins, specifically APOBEC3D, 
APOBEC3F, and APOBEC3G which induce G-to-A hyper-
mutations in the HIV-1 genome. When modified, APOB-
EC3D- and APOBEC3F-preferred sites of actions are 
related to anti-HIV-1 drug resistance (Sato et al. 2014). 
Cellular double-stranded RNA adenosine deaminase modi-
fies the viral RNA sequence, so that the HIV-1 genome is 
not recognized by anti-sense RNA encoded by VRX494 
(Mukherjee et al. 2010). Nevertheless, these modifications 
usually result in defective replication (Mukherjee et al. 
2010).

Ethical issues concerning the use of the HM in the labo-
ratory includes the justification for the use of the animal; it 
specially focuses on the number of mice studied and their 
welfare, including potential pain or distress that they may 
suffer during the procedures (Brown and Murray 2006). 

The use of the mice in the laboratory must always take 
place under directions and instructions from the Institu-
tional Animal Care and Use Committee. Some researchers 
use fetal liver as a source of human HSCs, but it can be 
challenging to obtain human fetal tissues due to govern-
mental regulations in some states or countries.
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